Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 118
1.
J Integr Med ; 22(1): 1-11, 2024 Jan.
Article En | MEDLINE | ID: mdl-38336507

Tocotrienols are found in a variety of natural sources, like rice bran, annatto seeds and palm oil, and have been shown to have several health-promoting properties, particularly against chronic diseases such as cancer. The incidence of cancer is rapidly increasing around the world, not only a result of continued aging and population growth, but also due to the adoption of aspects of the Western lifestyle, such as high-fat diets and low-physical activity. The literature provides strong evidence that tocotrienols are able to inhibit the growth of various cancers, including breast, lung, ovarian, prostate, liver, brain, colon, myeloma and pancreatic cancers. These findings, along with the reported safety profile of tocotrienols in healthy human volunteers, encourage further research into these compounds' potential use in cancer prevention and treatment. The current review provided detailed information about the molecular mechanisms of action of different tocotrienol isoforms in various cancer models and evaluated the potential therapeutic effects of different vitamin E analogues on important cancer hallmarks, such as cellular proliferation, apoptosis, angiogenesis and metastasis. MEDLINE/PubMed and Scopus databases were used to identify recently published articles that investigated the anticancer effects of vitamin E derivatives in various types of cancer in vitro and in vivo along with clinical evidence of adjuvant chemopreventive benefits. Following an overview of pre-clinical studies, we describe several completed and ongoing clinical trials that are paving the way for the successful implementation of tocotrienols in cancer chemotherapy.


Neoplasms , Tocotrienols , Humans , Antioxidants/pharmacology , Apoptosis , Neoplasms/drug therapy , Neoplasms/pathology , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Vitamin E/pharmacology , Vitamin E/therapeutic use , Clinical Trials as Topic
2.
Biomed Pharmacother ; 170: 115998, 2024 Jan.
Article En | MEDLINE | ID: mdl-38091638

Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.


Osteoarthritis , Osteoporosis , Tocotrienols , Humans , Rats , Female , Male , Animals , Infant , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Rats, Sprague-Dawley , Iodoacetic Acid/adverse effects , Olive Oil , Osteoporosis/pathology , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Vitamin E/therapeutic use , Ovariectomy
3.
Acta Oncol ; 62(9): 1066-1075, 2023 Sep.
Article En | MEDLINE | ID: mdl-37646150

PURPOSE: Triplet chemotherapy might be more effective than doublet chemotherapy in metastatic colorectal cancer (mCRC), but it may also be marked by increased toxicity. To investigate whether δ-tocotrienol, a vitamin E analogue, with possible neuroprotective and anti-inflammatory effects, reduces the toxicity of triplet chemotherapy, we conducted a randomized, double-blind, placebo-controlled trial in mCRC patients receiving first-line 5-fluorouracil, oxaliplatin and irinotecan (FOLFOXIRI). MATERIAL AND METHODS: Seventy patients with mCRC were randomly assigned (1:1) to receive FOLFOXIRI plus either δ-tocotrienol or placebo at the Department of Oncology, Vejle Hospital, Denmark. Eligibility criteria were adenocarcinoma in the colon or rectum, age 18-75 years and ECOG performance status 0-1. FOLFOXIRI was given in eight cycles followed by four cycles of 5-fluorouracil. δ-tocotrienol 300 mg or placebo × 3 daily was added during chemotherapy and for a maximum of two years. The primary endpoint was time to hospitalization or death during treatment with chemotherapy. RESULTS: Median time to first hospitalization or death was 3.7 months in the placebo group (95% CI 1.93-not reached (NR)), and was NR in the δ-tocotrienol group (95% CI 1.87-NR) with a hazard ratio of 0.70 (95% CI 0.36-1.36). Grade 3-4 toxicities were uncommon in both groups, except for neutropenia, which occurred in 19 patients (58%) in the placebo group and 17 patients (50%) in the δ-tocotrienol group. There were no grade 3 or 4 peripheral sensory neuropathy. In the placebo group, 24 patients (71%) had oxaliplatin dose reductions compared to 17 patients (47%) in the δ-tocotrienol group (p = 0.047). CONCLUSION: The addition of δ-tocotrienol to FOLFOXIRI did not statistically significant prolong the time to first hospitalization or death compared to FOLFOXIRI plus placebo. Toxicity was manageable and not statistically different. There was a statistically significant difference in dose reductions of oxaliplatin pointing to a possible neuroprotective effect of δ-tocotrienol.


Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Tocotrienols , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Oxaliplatin/therapeutic use , Bevacizumab/adverse effects , Tocotrienols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Camptothecin , Colonic Neoplasms/drug therapy , Fluorouracil/adverse effects , Rectal Neoplasms/drug therapy , Leucovorin/adverse effects
4.
Adv Nutr ; 14(5): 1159-1169, 2023 09.
Article En | MEDLINE | ID: mdl-37321474

There are a large number of studies that have reported benefits of tocotrienol-rich fraction (TRF) in various populations with different health status. To date, no systematic reviews have examined randomized controlled trials (RCTs) on the effect of TRF supplementations specifically in patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to examine the changes in HbA1c (glycated hemoglobin), blood pressure, and serum Hs-CRP (C-reactive protein high sensitivity) levels at post-TRF supplementation. Online databases including PubMed, Scopus, OVID Medline, and Cochrane Central Register of Controlled Trials were searched from inception until March 2023 for RCTs supplementing TRF in patients with T2DM. A total of 10 studies were included in the meta-analysis to estimate the pooled effect size. The Cochrane Risk-of-Bias (RoB) Assessment Tool was utilized to evaluate the RoB in individual studies. The meta-analysis revealed that TRF supplementation at a dosage of 250-400 mg significantly decreased HbA1c (-0.23, 95% CI: -0.44, -0.02, P < 0.05, n = 754), particularly where the intervention duration is less than 6 mo (-0.47%, 95% CI: -0.90, -0.05, P < 0.05, n = 126) and where duration of diabetes is less than 10 y (-0.37, 95% CI: -0.68, -0.07, P < 0.05, n = 83). There was no significant reduction in systolic and diastolic blood pressure and serum Hs-CRP (P > 0.05). The present meta-analysis demonstrated that supplementing with TRF in patients with T2DM decreased HbA1c but does not decrease systolic and diastolic blood pressure and serum Hs-CRP.


Diabetes Mellitus, Type 2 , Tocotrienols , Humans , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Glycated Hemoglobin , C-Reactive Protein/analysis , Randomized Controlled Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Dietary Supplements
5.
Hereditas ; 160(1): 15, 2023 Apr 13.
Article En | MEDLINE | ID: mdl-37055846

BACKGROUND: Gastric cancer is a common cause of death from cancer and an important global health care issue. Consequently, there is an urgent need to find new drugs and therapeutic targets for the treatment of gastric cancer. Recent studies have shown that tocotrienols (T3) have significant anticancer ability in cancer cell lines. Our previous study found that γ-tocotrienol (γ-T3) induced apoptosis in gastric cancer cells. We further explored the possible mechanisms of γ-T3 therapy for gastric cancer. METHODS: In this study, we treated gastric cancer cells with γ-T3, collect and deposit the cells. γ-T3-treated gastric cancer cells group and untreated group were subjected to RNA-seq assay, and analysis of sequencing results. RESULTS: Consistent with our previous findings, the results suggest that γ-T3 can inhibit mitochondrial complexes and oxidative phosphorylation. Analysis reveals that γ-T3 has altered mRNA and ncRNA in gastric cancer cells. Significantly altered signaling pathways after γ-T3 treatment were enriched for human papillomavirus infection (HPV) pathway and notch signaling pathway. The same significantly down-regulated genes notch1 and notch2 were present in both pathways in γ-T3-treated gastric cancer cells compared to controls. CONCLUSIONS: It is indicated that γ-T3 may cure gastric cancer by inhibiting the notch signaling pathway. To provide a new and powerful basis for the clinical treatment of gastric cancer.


Stomach Neoplasms , Tocotrienols , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Cell Line, Tumor , Vitamin E/pharmacology , Vitamin E/therapeutic use , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Apoptosis , Signal Transduction
6.
J Pak Med Assoc ; 73(3): 603-610, 2023 Mar.
Article En | MEDLINE | ID: mdl-36932765

OBJECTIVE: To evaluate and compare the pharmacokinetic parameters, especially bioavailability, of annatto-based tocotrienol with palm tocotrienol-rich fraction in healthy human volunteers for better therapeutic outcome. METHODS: The systematic review was conducted between April and August 2021 in accordance with the Preferred Reporting Items for Systematic Review and Meta Analysis guidelines, and comprised search on PubMed, Google Scholar, Pakmedinet and Google search engines for open-label or double-blind randomised controlled trials involving healthy human volunteers published till January 2021. Key words used included annatto-based tocotrienol, palm tocotrienol-rich fraction, absorption and bioavailability. Boolean operators were also used, like tocotrienol AND bioavailability, annatto tocotrienol AND pharmacokinetics. RESULTS: Of the 230 articles identified, 50(21.7%) articles met the eligibility criteria. Of them, 7(14%) were selected for data extraction and detailed analysis. Pharmacokinetic parameters of annatto-based tocotrienol were better than palm-derived tocotrienol. Oral administration of all the isomers of annatto-based tocotrienols resulted in dose-dependent increase in area under curve and plasma levels. Amongst all the isomers of annatto-based and palm-derived tocotrienol, delta isomer of annatto-based tocotrienol had the highest bioavailability with area under curve 7450±89 ng/ml, time to reach peak plasma levels 4 hours, maximum plasma concentration 1591±43 ng/nl and elimination half-life 2. 68 ±0.29 hrs. Pharmacokinetic parameters of delta isomer of annatto-based tocotrienol was greater than palm tocotrienol-rich fraction. CONCLUSIONS: Bioavailability of annatto-based tocotrienol was better than that of palm-derived tocotrienol-rich fraction. Delta isomer of annatto-based tocotrienol had the highest bioavailability amongst all isomers of tocotrienol.


Tocotrienols , Humans , Tocotrienols/therapeutic use , Biological Availability , Health Status , Randomized Controlled Trials as Topic
7.
AAPS PharmSciTech ; 24(3): 79, 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36918482

All-trans retinoic acid and arsenic trioxide are the leading choices for the treatment of acute promyelocytic leukemia. Notwithstanding the impressive differentiative properties of all-trans retinoic acid and the apoptotic properties of arsenic trioxide, some problems still occur in acute promyelocytic leukemia treatment. These problems are due to patients' relapses, mainly related to changes in the ligand-binding domain of RARα (retinoic acid receptor α) and the cardiotoxic effects caused by arsenic trioxide. We previously developed a self-nanoemulsifying drug delivery system enriched with tocotrienols to deliver all-trans retinoic acid (SNEDDS-TRF-ATRA). Herein, we have evaluated if tocotrienols can help revert ATRA resistance in an APL cell line (NB4-R2 compared to sensitive NB4 cells) and mitigate the cardiotoxic effects of arsenic trioxide in a murine model. SNEDDS-TRF-ATRA enhanced all-trans retinoic acid cytotoxicity in NB4-R2 (resistant) cells but not in NB4 (sensitive) cells. Moreover, SNEDDS-TRF-ATRA did not significantly change the differentiative properties of all-trans retinoic acid in both NB4 and NB4-R2 cells. Combined administration of SNEDDS-TRF-ATRA and arsenic trioxide could revert QTc interval prolongation caused by ATO but evoked other electrocardiogram alterations in mice, such as T wave flattening. Therefore, SNEDDS-TRF-ATRA may enhance the antileukemic properties of all-trans retinoic acid but may influence ECG changes caused by arsenic trioxide administration. SNEDDS-TRF-ATRA presents cytotoxicity in resistant APL cells (NB4-R2). Combined administration of ATO and SNEDDS-TRF-ATRA in mice prevented the prolongation of the QTc interval caused by ATO but evoked ECG abnormalities such as T wave flattening.


Leukemia, Promyelocytic, Acute , Tocotrienols , Animals , Mice , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Tocotrienols/therapeutic use , Tretinoin/pharmacology , Tretinoin/therapeutic use , Electrocardiography , Oxides/pharmacology , Oxides/therapeutic use
8.
Inflammopharmacology ; 31(2): 877-886, 2023 Apr.
Article En | MEDLINE | ID: mdl-36853419

Bixa orellana L. is a plant popularly known as "ucurum", "annatto", and "achiote". It is native to South America, and its seeds are an abundant source of geranylgeraniol and tocotrienols. Nanoencapsulation is a valuable technique that can decrease the drug needed to achieve an effect, decreasing potential toxicity, side effects and potentiate the anti-inflammatory effect. This study aimed to evaluate the acute toxicity of an intramuscular application of a nanodispersion containing a standardized extract from the seeds of Bixa orellana (NBO) in Wistar rats. The chemical evaluation showed δ-tocotrienol at 0.725 ± 0.062 mg/mL (72.6 ± 0.9%). The stability study showed the nanoparticles had an average size from 53.15 ± 0.64 to 59.9 ± 3.63 nm, with a polydispersity index ranging from 0.574 ± 0.032 to 0.574 ± 0.32, Zeta potential from 18.26 ± 0.59 to 19.66 ± 1.45 mV. After testing the intramuscular application of NBO with doses from 1 to 5 mg/kg in animals, it was observed that the acute treatment did not elicit any toxic effects within this range. The dose of 10 mg/kg, although not affecting hematological and biochemical parameters (CPK, LDH, myoglobin, AST, ALT, TC, TG, glucose levels, creatinine, and urea), could induce some muscle tissue changes, including leukocyte infiltration, morphological chances, and potentially necrosis. In conclusion, the results showed that the treatments devoided toxicity between 1 and 5 mg/kg.


Bixaceae , Tocotrienols , Rats , Animals , Rats, Wistar , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Anti-Inflammatory Agents/toxicity , Seeds , Plant Extracts/toxicity , Plant Extracts/therapeutic use
9.
Clin Nutr ESPEN ; 53: 60-73, 2023 02.
Article En | MEDLINE | ID: mdl-36657931

BACKGROUND: Vitamin E has been investigated for its antitumor potential, including the ability to change cancer gene pathways as well as promote antioxidant and pro-oxidant activity. OBJECTIVE: Therefore, this systematic review aimed to evaluate antitumor and chemopreventive activity of different vitamin E isoforms (tocopherols and tocotrienols) through in vitro and in vivo studies. METHOD: The systematic review was registered in PROSPERO (No. CRD4202126207) and the search was carried out in four electronic databases (PubMed, Science Direct, Scopus and Web of Science) in June 2021 by three independent reviewers. The search equation used was: "Supplementation" AND ("Vitamin E" OR Tocopherol OR Tocotrienol) AND "breast cancer" AND (chemotherapy OR therapy OR prevention). In vitro studies and animal models of breast cancer supplemented with tocopherol or tocotrienol vitamers, alone or in combination, were included. RESULTS: The results revealed 8546 relevant studies that were initially identified in our search. After analysis, a total of 12 studies were eligible for this systematic review. All studies included animal models, and 5 of them also performed in vitro experiments on cancer cell lines. The studies performed supplementation with tocopherols, mixtures (tocopherols and tocotrienols) and synthetic vitamin E forms. There was an significant association of estradiol, dendritic cells and pterostilbene in combined therapy with vitamin E. Vitamin E delayed tumor development, reduced tumor size, proliferation, viability, expression of anti-apoptotic and cell proliferation genes, and upregulated pro-apoptotic genes, tumor suppressor genes and increased immune response. The effects on oxidative stress markers and antioxidant activity were conflicting among studies. Only one study with synthetic vitamin E reported cardiotoxicity, but it did not show vitamin E genotoxicity. CONCLUSION: In conclusion, vitamin E isoforms, isolated or associated, showed antitumor and chemopreventive activity. However, due to studies heterogeneity, there is a need for further analysis to establish dose, form, supplementation time and breast cancer stage.


Neoplasms , Tocotrienols , Animals , Vitamin E/pharmacology , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Antioxidants/pharmacology , Tocopherols/pharmacology , Neoplasms/drug therapy , Vitamins
10.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36430808

Although pulmonary fibrosis (PF) is considered a rare disease, the incidence thereof has increased steadily in recent years, while a safe and effective cure remains beyond reach. In this study, the potential of tocotrienol-rich fractions (TRF) and carotene to alleviate PF was explored. PF was induced in Sprague-Dawley rats via a single intratracheal bleomycin (BLM) (5 mg/kg) instillation. These rats were subsequently treated with TRF, carotene, pirfenidone (Pir) and nintedanib (Nin) for 28 days via gavage administration, whereafter histopathological performance, biochemical functions and molecular alterations were studied in the lung tissues. Our results showed that TRF, carotene, Nin and Pir all ameliorated PF by reducing inflammation and resisting oxidative stress to varying degrees. The related mechanisms involved the TGF-ß1/Smad, PI3K/Akt and NF-κB signaling pathways. Ultimately, our findings revealed that, when combined with TRF, the therapeutic effects of Nin and Pir on PF were enhanced, indicating that TRF may, indeed, provide promising potential for use in combination therapy in the treatment of PF.


Pulmonary Fibrosis , Tocotrienols , Rats , Animals , Pulmonary Fibrosis/metabolism , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Carotenoids/therapeutic use
11.
Nutrients ; 14(21)2022 Nov 03.
Article En | MEDLINE | ID: mdl-36364894

Tocotrienol-rich fraction (TRF), a palm oil-derived vitamin E fraction, is reported to possess potent neuroprotective effects. However, the modulation of proteomes in differentiated human neuroblastoma SH-SY5Y cells (diff-neural cells) by TRF has not yet been reported. This study aims to investigate the proteomic changes implicated by TRF in human neural cells using a label-free liquid-chromatography-double mass spectrometry (LC-MS/MS) approach. Levodopa, a drug used in the treatment of Parkinson's disease (PD), was used as a drug control. The human SH-SY5Y neuroblastoma cells were differentiated for six days and treated with TRF or levodopa for 24 h prior to quantitative proteomic analysis. A total of 81 and 57 proteins were differentially expressed in diff-neural cells following treatment with TRF or levodopa, respectively. Among these proteins, 32 similar proteins were detected in both TRF and levodopa-treated neural cells, with 30 of these proteins showing similar expression pattern. The pathway enrichment analysis revealed that most of the proteins regulated by TRF and levodopa are key players in the ubiquitin-proteasome, calcium signalling, protein processing in the endoplasmic reticulum, mitochondrial pathway and axonal transport system. In conclusion, TRF is an essential functional food that affects differential protein expression in human neuronal cells at the cellular and molecular levels.


Neuroblastoma , Parkinson Disease , Tocotrienols , Humans , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Levodopa/pharmacology , Proteomics , Parkinson Disease/drug therapy , Chromatography, Liquid , Neuroblastoma/drug therapy , Tandem Mass Spectrometry , Vitamin E
12.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article En | MEDLINE | ID: mdl-36362316

Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.


Dementia, Vascular , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Tocotrienols , Rats , Animals , Palm Oil , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Acetylcholinesterase/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Superoxide Dismutase/metabolism , Maze Learning
13.
Biomed Pharmacother ; 153: 113533, 2022 Sep.
Article En | MEDLINE | ID: mdl-36076612

Oxidative stress, a key player in diabetic retinopathy (DR), is associated with retinal cell apoptosis. This study investigated the effect of tocotrienol-rich fraction (TRF), a potent antioxidant, towards visual behaviour, retinal morphology, cells apoptosis and redox status in streptozotocin (STZ)-induced DR rats. Sprague-Dawley rats were divided into 3 groups: non-diabetic (N), was injected with citrate buffer intraperitoneally, diabetic treated with vehicle (DV), and diabetic treated with TRF (DT), were injected with STZ intraperitoneally (55 mg/kg) to induce diabetes. DT received 100 mg of TRF/kg orally for 12-weeks, whereas DV and N received vehicle. The general and visual-behaviour responses were assessed at week 12 in an open field arena. Rats were then sacrificed, and retinae were processed for haematoxylin and eosin (H&E) and terminal transferase-mediated dUTP nick end-labelling (TUNEL) staining. Retinal antioxidant, lipid peroxidation and anti-apoptotic markers were measured. The general and visual-behaviour responses in DT were comparable to N. Retinal thickness and cell counts were lower in DV and DT compared to N. Lower number of TUNEL-positive cells were observed in DT compared to DV (1.48-fold, p < 0.001) which correlated with retinal caspase-3 expression (2.31-fold, p < 0.001). The retinal oxidative stress in DT was lower than DV as indicated by higher reduced glutathione (2.10-fold, p < 0.05), superoxide dismutase (1.12-fold, p < 0.05) and catalase (1.40-fold, p < 0.001), and lower malondialdehyde (2.54-fold, p < 0.001). In conclusion, oral TRF (100 mg/kg) supplementation for 12-weeks reduces retinal oxidative stress in STZ-induced DR rats, which in turn reduces retinal cell apoptosis and protects retinal morphology. These findings were associated with preservation of the visual-behaviour responses.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Streptozocin , Tocotrienols , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/chemically induced , Diabetic Retinopathy/drug therapy , Oxidative Stress , Rats , Rats, Sprague-Dawley , Streptozocin/metabolism , Streptozocin/pharmacology , Superoxide Dismutase/metabolism , Tocotrienols/pharmacology , Tocotrienols/therapeutic use
14.
Biofactors ; 48(4): 813-856, 2022 Jul.
Article En | MEDLINE | ID: mdl-35719120

The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.


Neoplasms , Tocotrienols , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Dietary Supplements , Humans , Neoplasms/drug therapy , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Vitamin E
15.
Food Res Int ; 156: 111175, 2022 06.
Article En | MEDLINE | ID: mdl-35651097

Palm oil is rich in tocotrienols (T3s), a type of vitamin E that has garnered considerable research interest as it exhibits anti-inflammatory as well as antioxidant characteristics that are comparable to or exceed those of tocopherols (Toc). Notably, T3 must be consumed as it cannot be produced by the human body. Here, we reviewed the anti-inflammatory activities of T3s in the prevention and treatment of various inflammatory disorders; focusing on recent preclinical and clinical studies. There is compelling data from experimental models and human studies that shows that T3 administration can inhibit the release of various inflammatory mediators that contribute to age-related disease by enhancing oxidative stress, reducing melanin production and skin damage, and preventing cardiovascular disease and stroke. There is evidence to show that T3s possess neuroprotective, anticancer, and anti-osteoporosis properties. In addition, T3s also protect the gastrointestinal tract, facilitate blood glucose control in people with diabetes, and prevent fatty liver disease. Furthermore, results from some clinical studies suggest that T3s are beneficial nutritional supplements with no evident side-effects when administered to patients with neurological or cardiovascular disorders. There is growing evidence from clinical trials that shows that T3s can help prevent dementia and Alzheimer's disease. More well-designed clinical trials, as well as human intervention studies, are required to confirm the health benefits of palm T3.


Cardiovascular Diseases , Tocotrienols , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Chronic Disease , Humans , Inflammation/drug therapy , Palm Oil , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Vitamin E/pharmacology , Vitamin E/therapeutic use
16.
Cells ; 11(4)2022 02 10.
Article En | MEDLINE | ID: mdl-35203265

The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.


Pre-Eclampsia , Tocotrienols , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Female , Humans , Oxidative Stress , Pre-Eclampsia/drug therapy , Pre-Eclampsia/prevention & control , Pregnancy , Tocotrienols/pharmacology , Tocotrienols/therapeutic use
17.
Int J Med Sci ; 18(16): 3665-3673, 2021.
Article En | MEDLINE | ID: mdl-34790038

Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.


Bone and Bones/drug effects , Carotenoids/therapeutic use , Osteoporosis, Postmenopausal/drug therapy , Plant Extracts/therapeutic use , Tocotrienols/therapeutic use , Animals , Bixaceae/chemistry , Bone Density/drug effects , Bone Morphogenetic Proteins/metabolism , Bone and Bones/metabolism , Bone and Bones/pathology , Carotenoids/chemistry , Carotenoids/pharmacology , Disease Models, Animal , Emulsions , Estradiol/deficiency , Female , Genetic Markers , Humans , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/pathology , Osteoprotegerin/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , RANK Ligand/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tocotrienols/chemistry , Tocotrienols/pharmacology
18.
Biomed Pharmacother ; 140: 111796, 2021 Aug.
Article En | MEDLINE | ID: mdl-34098194

Normal brain functioning involves the interaction of interconnected molecular and cellular activities, which appear to alter normal to abnormal brain functioning when worsened, contributing to the emergence of neurological disorders. There are currently millions of people who are living with brain disorders globally and this will rise if suitable prevention strategies are not explored. Nutraceutical intended to treat numerous health goals with little adverse effect possible together can be more beneficial than pharmaceutical monotherapy for fostering balanced brain functioning. Nutraceutical provides a specific composition of effective macronutrients and micronutrients that are difficult to synthesize in the laboratory. Numerous elements of rice fibers in rice bran are characterized as natural anti-oxidant and having potential anti-inflammatory activity. The rice bran captures interest among the researchers as it is widespread, affordable, and rich in nutrients including protein, fat, carbohydrates, bioactive components, and dietary fiber. This review covers the neuroprotective multiplicity of rice bran and its constituents to deter pathological conditions of the brain and to facilitate balanced brain functioning at the same time.


Anti-Inflammatory Agents/therapeutic use , Nervous System Diseases/diet therapy , Neuroprotective Agents/therapeutic use , Oryza , Phenylpropionates/therapeutic use , Plant Extracts/therapeutic use , Rice Bran Oil/therapeutic use , Tocotrienols/therapeutic use , Animals , Dietary Supplements , Humans , Serotonin/metabolism
19.
Biomed Pharmacother ; 137: 111368, 2021 May.
Article En | MEDLINE | ID: mdl-33582449

Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p < 0.05). Treatment with unformulated or SEDDS-formulated annatto tocotrienol improved cortical bone thickness, preserved bone calcium content, increased bone biomechanical strength and increased antioxidant enzyme activities compared with the ovariectomized group (p < 0.05). Only SEDDS-formulated annatto tocotrienol improved trabecular microstructure, bone stiffness and lowered malondialdehyde level (p < 0.05 vs the ovariectomized group). The improvement caused by annatto tocotrienol was comparable to raloxifene. In conclusion, SEDDS improves the bioavailability and skeletal therapeutic effects of annatto tocotrienol in a rat model of postmenopausal bone loss. This formulation should be tested in a human clinical trial to validate its efficacy.


Bone Density Conservation Agents/therapeutic use , Carotenoids/therapeutic use , Osteoporosis, Postmenopausal/prevention & control , Plant Extracts/therapeutic use , Tocotrienols/therapeutic use , Absorptiometry, Photon , Animals , Bixaceae/chemistry , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/chemistry , Bone and Bones/anatomy & histology , Bone and Bones/drug effects , Calcium/metabolism , Carotenoids/administration & dosage , Carotenoids/chemistry , Drug Delivery Systems , Emulsions , Female , Humans , Malondialdehyde/metabolism , Ovariectomy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Raloxifene Hydrochloride/therapeutic use , Rats , Rats, Sprague-Dawley , Selective Estrogen Receptor Modulators/therapeutic use , Tocotrienols/administration & dosage , Tocotrienols/chemistry , X-Ray Microtomography
20.
J Food Biochem ; 44(12): e13493, 2020 12.
Article En | MEDLINE | ID: mdl-33020956

The effects of royal jelly (RJ) and tocotrienol-rich fraction (TRF) on obesity-induced glucose intolerance and inflammation were assessed in the current study. Regarding irisin as an important adipomyokine that attenuates obesity-induced disorders, we evaluated whether RJ and TRF could exert their metabolism regulatory effects through irisin. Obese rats were fed a high-fat diet (HFD) with or without supplementation of RJ, TRF, or both, for 8 weeks. At the end of the intervention, weight, irisin, glycemic, and inflammatory indices were measured. The weight of the rats did not remarkably reduce in any of the groups. Glucose homeostasis and inflammation were improved when we added RJ and TRF to HFD. RJ elevated irisin concentration, but the effect of TRF on irisin was not noticeable. Our results indicated that, despite the lack of significant weight loss, RJ and TRF promoted healthy obesity. This improvement was mediated by irisin in RJ consuming rats. PRACTICAL APPLICATIONS: Obesity is a public health concern associated with several chronic disorders. The beneficial effects of irisin on obesity-related disorders are well-established. It is the first study assessing the effect of RJ and TRF as functional foods, with pharmacological and nutritional activities on obesity complications, through irisin mediation. Our study demonstrated that RJ exerts its metabolic regulatory effects by irisin as a mediator. Our investigation makes a remarkable contribution to the literature, because it suggests a new mechanism for the anti-obesity properties of RJ and TRF.


Tocotrienols , Animals , Fatty Acids , Glycemic Control , Inflammation/drug therapy , Obesity/drug therapy , Rats , Tocotrienols/pharmacology , Tocotrienols/therapeutic use
...